Another “String to the Bow” of PJ34, a Potent Poly(ADP-Ribose)Polymerase Inhibitor: An Antiplatelet Effect through P2Y12 Antagonism?
نویسندگان
چکیده
BACKGROUND Neuro- and vasoprotective effects of poly(ADP-ribose)polymerase (PARP) inhibition have been largely documented in models of cerebral ischemia, particularly with the potent PARP inhibitor PJ34. Furthermore, after ischemic stroke, physicians are faced with incomplete tissue reperfusion and reocclusion, in which platelet activation/aggregation plays a key role. Data suggest that certain PARP inhibitors could act as antiplatelet agents. In that context, the present in vitro study investigated on human blood the potential antiplatelet effect of PJ34 and two structurally different PARP inhibitors, DPQ and INO-1001. METHODS AND RESULTS ADP concentrations were chosen to induce a biphasic aggregation curve resulting from the successive activation of both its receptors P2Y(1) and P2Y(12). In these experimental conditions, PJ34 inhibited the second phase of aggregation; this effect was reduced by incremental ADP concentrations. In addition, in line with a P2Y(12) pathway inhibitory effect, PJ34 inhibited the dephosphorylation of the vasodilator stimulated phosphoprotein (VASP) in a concentration-dependent manner. Besides, PJ34 had no effect on platelet aggregation induced by collagen or PAR1 activating peptide, used at concentrations inducing a strong activation independent on secreted ADP. By contrast, DPQ and INO-1001 were devoid of any effect whatever the platelet agonist used. CONCLUSIONS We showed that, in addition to its already demonstrated beneficial effects in in vivo models of cerebral ischemia, the potent PARP inhibitor PJ34 exerts in vitro an antiplatelet effect. Moreover, this is the first study to report that PJ34 could act via a competitive P2Y(12) antagonism. Thus, this antiplatelet effect could improve post-stroke reperfusion and/or prevent reocclusion, which reinforces the interest of this drug for stroke treatment.
منابع مشابه
Poly(ADP-Ribose) polymerase inhibition reduces reperfusion injury after heart transplantation.
The aim of the present study was to investigate the effects of the novel poly(ADP-ribose) polymerase (PARP) inhibitor PJ34 (N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide) on myocardial and endothelial function after hypothermic ischemia and reperfusion in a heterotopic rat heart transplantation model. After a 1-hour ischemic preservation, reperfusion was started either after ap...
متن کاملCombinatorial effects of PARP inhibitor PJ34 and histone deacetylase inhibitor vorinostat on leukemia cell lines.
BACKGROUND Poly (ADP-ribose) polymerase (PARP) inhibitors and histone deacetylase (HDAC) inhibitors are new promising anticancer drugs. The aim of the present study was to investigate the effect of combination treatment with PARP inhibitor PJ34 and HDAC inhibitor vorinostat on human leukemia cell lines. MATERIALS AND METHODS Proliferation, apoptosis, mitochondrial membrane potential (ψm) and ...
متن کاملPoly (ADP-ribose) polymerase inhibition prevents spontaneous and recurrent autoimmune diabetes in NOD mice by inducing apoptosis of islet-infiltrating leukocytes.
Poly (ADP-ribose) polymerase (PARP) is a nuclear enzyme that consumes NAD in response to DNA strand breaks. The PARP inhibitor nicotinamide prevents NAD consumption and protects islet beta-cells from chemically induced necrosis but not cytokine-induced apoptosis. Therefore, it is unclear how nicotinamide protects NOD mice from autoimmune diabetes in which apoptosis is the mode of beta-cell deat...
متن کاملUse of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion.
BACKGROUND AND PURPOSE Most stroke patients do not present for medical treatment until several hours after onset of brain ischemia. Consequently, neuroprotective strategies are required with comparably long therapeutic windows. Poly(ADP-ribose) polymerase inhibitors such as PJ34 are known to suppress microglial activation, a postischemic event that may contribute to neuronal death. We evaluated...
متن کاملPretreatment of therapeutic cells with poly(ADP-ribose) polymerase inhibitor enhances their efficacy in an in vitro model of cell-based therapy in myocardial infarct
The potential of cell-based therapies in diseases involving ischemia-reperfusion is greatly hampered by the excessive loss of administered cells in the harsh and oxidative environment where these cells are supposed to act. Therefore, we investigated if inhibition of poly(ADP-ribose) polymerase (PARP) in the therapeutically added cells would lead t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014